標題:

免費註冊體驗

 

此文章來自奇摩知識+如有不便請留言告知

F.4 數學 Number system 一條

發問:

If z is a complex number and (1+i)z^2-(2+3i)+2+i=0. Find z. 請問如何計算? 更新: 題目沒有打錯,謝謝! 更新 2: 已改為上傳圖片: http://img822.imageshack.us/img822/5615/123ou.png 謝謝! 更新 3: 答案應該不一定是數字,因為上個幾題有danswer都係complex number

最佳解答:

If z is a complex number and (1+i)z^2-(2+3i)+2+i=0. Find z.請問如何計算?Sol(1+i)z^2-(2+3i)+2+i=0(1+i)z^2=2+3i-2-i(1+i)z^2=2iz^2=2i/(1+i)=2(1-i)i/2=i(1-i)=1+i=√2(1/√2+i/√2) =2^(1/2)(Cos(π/4)+iSin(π/4)) =2^(1/2)(Cos(2nπ+π/4)+iSin(2nπ+π/4)) z=2^(1/4)(Cos(nπ+π/8)+iSin(nπ+π/8)) (1) n=0z=2^(1/4) (Cos(π/8)+iSin(π/8)) =2^(1/4) (√(2+√2)/2+i√(2-√2)/2) =2^(-3/4) (√(2+√2)+i√(2-√2)) (2) n=1z=2^(1/4) (Cos(9π/8)+iSin(9π/8)) =2^(1/4) (-√(2+√2)/2-i√(2-√2)/2) =2^(-3/4) (-√(2+√2)-i√(2-√2)) 題目改為(1+i)z^2-(2+3i)z+2+i=0. (1+i)z^2-(2+3i)z+2+i=0D=(2+3i)^2-4*(1+i)(2+i) =(4+12i-9)-4(2+i+2i-1) =(4+12i-9)-4(1+3i) =-9(1+i)z^2-(2+3i)z+2+i=0z=((2+3i)+/-3i)/(2+2i) (1) z=(2+3i+3i)/(2+2i) =(1+3i)/(1+i) =(1+3i)(1-i)/[(1+i)(1-i)] =(1-i+3i+3)/2=2+i(2) z=((2+3i)-3i)/(2+2i) =2/(2+2i) =1/(1+i) =(1-i)/2 2010-09-03 00:15:19 補充: If z is a complex number and (1+i)z^2-(2+3i)+2+i=0. Find z. 請問如何計算? Sol (1+i)z^2-(2+3i)+2+i=0 (1+i)z^2=2+3i-2-i (1+i)z^2=2i z^2=2i/(1+i)=2(1-i)i/2=i(1-i)=1+i =√2(1/√2+i/√2) =2^(1/2)(Cos(π/4)+iSin(π/4)) =2^(1/2)(Cos(2nπ+π/4)+iSin(2nπ+π/4)) z=2^(1/4)(Cos(nπ+π/8)+iSin(nπ+π/8)) 2010-09-03 00:16:16 補充: (1) n=0 z=2^(1/4) (Cos(π/8)+iSin(π/8)) =2^(1/4) (√(2+√2)/2+i√(2-√2)/2) =2^(-3/4) (√(2+√2)+i√(2-√2)) (2) n=1 z=2^(1/4) (Cos(9π/8)+iSin(9π/8)) =2^(1/4) (-√(2+√2)/2-i√(2-√2)/2) =2^(-3/4) (-√(2+√2)-i√(2-√2)) 2010-09-03 00:16:53 補充: 題目改為(1+i)z^2-(2+3i)z+2+i=0. (1+i)z^2-(2+3i)z+2+i=0 D=(2+3i)^2-4*(1+i)(2+i) =(4+12i-9)-4(2+i+2i-1) =(4+12i-9)-4(1+3i) =-9 2010-09-03 00:17:01 補充: (1+i)z^2-(2+3i)z+2+i=0 z=((2+3i)+/-3i)/(2+2i) (1) z=(2+3i+3i)/(2+2i) =(1+3i)/(1+i) =(1+3i)(1-i)/[(1+i)(1-i)] =(1-i+3i+3)/2 =2+i (2) z=((2+3i)-3i)/(2+2i) =2/(2+2i) =1/(1+i) =(1-i)/2

其他解答:

(1+i)z^2-(2+3i)+2+i=0 (1+i)z^2 -2 -3i +2 +i=0 (1+i)z^2 -3i +i = 0 (1+i)z^2 -2i = 0 (1+i)z^2 = +2i z^2 = +2i/(1 + i) ? ? ? ? ?2i(1 – i) z^2 = --------------- ? ? ? ? (1+i)(1 – i) ? ? ? ? ?2i(1 – i) z^2 = ------------ ?(Note: i^2 = -1) ? ? ? ?(1– i^2) ? ? ? ? ?2i(1 – i) z^2 = ------------ ? ? ? ? ? 1–(-1) ? ? ? ? ?2i(1 – i) z^2 = ------------ ? ? ? ? ? ? ?2 z^2 = i – i^2 z^2 = i – (-1) z^2 = 1 + i ? Taking square root on both sides z = square root of (1 + i) ?or (1 + i)^0.5|||||好明顯有問題 你話無打錯, 都get 唔到問乜 -(2+3i)+2+i 點解會咁寫? 麻煩你寫清楚d 2010-08-25 22:53:45 補充: Z cannot be found. Z can only be determined in terms of i|||||Have you missed z next to (2+3i)? 2010-08-25 17:56:01 補充: If question isn't wrong, then you can solve for z simply by rearranging the real terms and imaginary terms, and take the square root of both side to get z,

arrow
arrow
    創作者介紹
    創作者 darlenoe158v0 的頭像
    darlenoe158v0

    航空百大

    darlenoe158v0 發表在 痞客邦 留言(0) 人氣()