標題:
A.maths
發問:
if a,b,c are real numbers and not all equal, prove that the quadratic equation (c-a)x^2-2(a-b)x+(b-c)=0................(*) has unequal real roots. x^2=x的2次方
最佳解答:
此文章來自奇摩知識+如有不便請留言告知
∵(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc ∴(a+b+c)^2 >= 0 ∴a^2+b^2+c^2+2ab+2ac+2bc >= 0--------(1) And also ∵ a^2+b^2+c^2 > 0 ∴ 2ab+2ac+2bc 0 and -(ab+bc+ac) > 0 (From (2) ) ∴Concluding that the discriminant >0 ∴(*) has unequal real roots
其他解答:
文章標籤
全站熱搜